Matematika

Pertanyaan

Limit 2X / X=>0 2-√4-4X

2 Jawaban

  • Lim (2x)/(2 - √(4 - 4x))
    x=>0

    Lim (2x)/(2 - √(4 - 4x)) . (2 + √(4 - 4x))/(2 + √(4 - 4x))
    x=>0

    Lim 2x(2 + √(4 - 4x)) / (4 - (4 - 4x))
    x=>0

    Lim 2x(2 + √(4 - 4x)) / 4x
    x=>0

    Lim (2 + √(4 - 4x)) / 2
    x=>0

    = (2 + √(4 - 4(0)) / 2

    = (2 + √4) /2

    = 4/2

    = 2
  • [tex]\displaystyle \lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}\cdot\frac{2+\sqrt{4-4x}}{2+\sqrt{4-4x}}\\\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=\lim_{x\to0}\frac{2x(2+\sqrt{4-4x})}{4-4+4x}\\\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=\lim_{x\to0}\frac{2x(2+\sqrt{4-4x})}{4x}\\\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=\lim_{x\to0}\frac{2+2\sqrt{1-x}}{2}\\\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=\lim_{x\to0}1+\sqrt{1-x}\\\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=1+1\sqrt{1-0}[/tex]
    [tex]\displaystyle \boxed{\boxed{\lim_{x\to0}\frac{2x}{2-\sqrt{4-4x}}=2}}[/tex]

Pertanyaan Lainnya