Jawab dengan menggunakan perhitungan! csc (π/14) csc (3π/14) csc (5π/14) csc (7π/14) csc (9π/14) csc (11π/14) csc (13π/14) = ... A. 2⁵ B. 2⁶ C. 2⁻¹ D. 2³ E. 2⁻⁴
Matematika
Anonyme
Pertanyaan
Jawab dengan menggunakan perhitungan!
csc (π/14) csc (3π/14) csc (5π/14) csc (7π/14) csc (9π/14) csc (11π/14) csc (13π/14) = ...
A. 2⁵
B. 2⁶
C. 2⁻¹
D. 2³
E. 2⁻⁴
csc (π/14) csc (3π/14) csc (5π/14) csc (7π/14) csc (9π/14) csc (11π/14) csc (13π/14) = ...
A. 2⁵
B. 2⁶
C. 2⁻¹
D. 2³
E. 2⁻⁴
1 Jawaban
-
1. Jawaban stgmargaretha
csc (π/14) csc (3π/14) csc (5π/14) csc (7π/14) csc (9π/14) csc (11π/14) csc (13π/14)
= 1/[sin (π/14) sin (3π/14) sin (5π/14) sin (7π/14) sin (9π/14) sin (11π/14) sin (13π/14)]
= 1/[cos (6π/14) . cos (4π/14) . cos (2π/14) . 1 . cos (2π/14) . cos (4π/14) . cos (6π/14)]
= 1/[cos (6π/14) . cos (4π/14) . cos (2π/14)]^2
= {sin (2π/14)/ [cos (6π/14) . cos (4π/14) . cos (2π/14) .sin (2π/14)]}^2
= {[2 . sin (2π/14)] / [cos (6π/14) . cos (4π/14) . sin(4π/14)]}^2
= {[4 . sin (2π/14)] / [cos (6π/14) . sin (8π/14)]}^2
= {[8 . sin (2π/14)] / [(sin (14π/14) + sin (2π/14)]}^2
= {[8 . sin (2π/14)] / [sin (2π/14)]}^2
= { 8 } ^ 2
= 2^6
Pilihan : B
mohon koreksi..
senang bisa membantu :)