Matematika

Pertanyaan

jka persamaan persamaan kuadrat x^2-ax=4=0 danx^2=6x=b=0 akar kembar dengan syarat ab>0, maka nilai 3a-4b=

2 Jawaban

  • Ax^2 + Bx + C = 0 mempunyai akar kembar jika D = 0
    => B^2 - 4AC = 0
    1) x^2 - ax + 4 = 0
    D = (-a)^2 - 4(1)(4) = 0
    => a^2 - 16 = 0
    => a^2 = 16
    => a = ±4
    => a = 4 atau a = -4

    2) x^2 + 6x + b = 0
    D = 6^2 - 4(1)(b) = 0
    => 36 - 4b = 0
    => -4b = -36
    => b = 9

    Karena ab > 0 maka a = 4 dan b = 9
    3a - 4b = 3(4) - 4(9) = 12 - 36 = -24
  • x² - ax + 4 = 0

    Syarat akar kembar
    D = 0
    b² - 4ac = 0
    (-a)² - 4(1)(4) = 0
    a² - 16 = 0
    a = 4
    a = -4, TM karena ab > 0

    x² + 6x + b = 0

    Syarat akar kembar
    D = 0
    b² - 4ac = 0
    6² - 4(1)(b) = 0
    36 - 4b = 0
    4b = 36
    B = 9

    Maka...
    3a - 4b
    = 3(4) - 4(9)
    = 12 - 36
    = -24

Pertanyaan Lainnya