Matematika

Pertanyaan

Itu gimana ya? Mohon bantuannya
Itu gimana ya? Mohon bantuannya

2 Jawaban

  • [tex]\displaystyle \lim_{x\to0}\frac{x^2+\sin^22x}{x^2\cos2x}=\lim_{x\to0}\frac{x^2+\sin^22x}{x^2}\cdot\frac{1}{\cos2x}\\\lim_{x\to0}\frac{x^2+\sin^22x}{x^2\cos2x}=\lim_{x\to0}\left(1+\left(\frac{\sin2x}{x}\right)^2\right)\cdot\lim_{x\to0}\frac{1}{\cos2x}\\\lim_{x\to0}\frac{x^2+\sin^22x}{x^2\cos2x}=(1+(2)^2)\cdot\frac{1}{\cos2(0)}\\\lim_{x\to0}\frac{x^2+\sin^22x}{x^2\cos2x}=(1+4)\cdot\frac{1}{\cos0}\\\boxed{\boxed{\lim_{x\to0}\frac{x^2+\sin^22x}{x^2\cos2x}=5}}[/tex]
  • Limit Fungsi Trigonometri.
    Kelompok peminatan kelas XII kurikulum 2013 revisi 2016.

    lim x→0 (x² + sin² 2x) / (x² cos 2x)
    = lim x→0 [1 + (sin² 2x) / x²] / cos 2x
    = lim x→0 [1 + (sin 2x / x)²] / cos 2x
    = [1 + (sin 0 / 0)²] / cos 0
    = (1 + 0 / 0) / 1

    0 / 0 merupakan bentuk tak tentu. Gunakan aturan L'Hôpital!
    = lim x→0 [1 + (2 cos 2x / 1)²] / cos 2x
    = [1 + (2 cos 0 / 1)²] / cos 0
    = (1 + 4) / 1 = 5