Matematika

Pertanyaan

Tentukanlah Nilai Integral Tertentu Berikut

Tentukanlah Nilai Integral Tertentu Berikut

1 Jawaban

  • [tex]\displaystyle \int\limit^1_0\frac{1}{x^2-4}\,dx=\int\limit^1_0\frac{1}{(x-2)(x+2)}\,dx\\\int\limit^1_0\frac{1}{x^2-4}\,dx=\int\limit^1_0\frac{\frac14}{x-2}-\frac{\frac14}{x+2}\,dx\\\int\limit^1_0\frac{1}{x^2-4}\,dx=\left\frac14\ln|x-2|-\frac14\ln|x+2|\right|^1_0\\\int\limit^1_0\frac{1}{x^2-4}\,dx=\frac14\ln|1-2|-\frac14\ln|1+2|-\frac14\ln|0-2|+\frac14\ln|0+2|\\\int\limit^1_0\frac{1}{x^2-4}\,dx=\frac14\ln|-1|-\frac14\ln|3|-\frac14\ln|-2|+\frac14\ln|2|[/tex]
    [tex]\displaystyle \int\limit^1_0\frac{1}{x^2-4}\,dx=\frac14\ln|1|-\frac14\ln|3|-\frac14\ln|2|+\frac14\ln|2|\\\int\limit^1_0\frac{1}{x^2-4}\,dx=\frac14(0)-\frac14\ln|3|\\\boxed{\boxed{\int\limit^1_0\frac{1}{x^2-4}\,dx=-\frac14\ln|3|}}[/tex]