Matematika

Pertanyaan

diketahui segitiga ABC sama kaki, AB=AC dan sudut BAC = 30 drajat. jika panjang BC = 4 cm, maka luas segitiga ABC

2 Jawaban

  • Matematika X SMA
    →→ Luas Segitiga ←←

    Pembahasan :
    Sudut sama kaki nya = (180° - 30)/2 = 75°

    Sin 75°
    = Sin (90 - 15)°
    = Cos 15°
    = Cos (45 - 30)°
    = Cos 45° Cos 30° + Sin 45° Sin 30°
    = (1/2 √2)(1/2 √3) + (1/2 √2)(1/2)
    = (1/4 √6) + (1/4 √2)
    = 1/4(√6 + √2)

    Aturan Sinus
    BC/Sin A = AB/Sin C
    4/Sin 30° = AB/Sin 75°
    8Sin 75° = AB
    AB = 8[1/4(√6 + √2)]
    AB = 2(√6 + √2) cm

    Luas Segitiga = 1/2 . AB . AC Sin A
    Luas Segitiga = 1/2 (2√6 + 2√2)² (1/2)
    Luas Segitiga = 1/4(32 + 16√3)
    Luas Segitiga = (8 + 4√3) cm²
  • <ABC = <ACB = (180 - 30)/2 = 75°

    AB/sin C = BC/sin 75
    AB/sin 75 = 4/sin 30
    AB = 8 sin 75
    AB = 8 × (√6 + √2)/4
    AB = 2√6 + 2√2 cm = AC


    Luas = 1/2 AB BC sin B
    Luas = 1/2  (2√6 + 2√2) . 4 sin 75
    Luas = 1/2 (8√6 + 8√2) × (√6 + √2)/4
    Luas = (4√6 + 4√2) (√6 + √2)/4
    Luas = (24 + 16√3+ 8)4
    Luas = (32 + 16√3)/4
    Luas = 8 + 4√3 cm²

Pertanyaan Lainnya