Matematika

Pertanyaan

Tolong bantu kerjakan nomor 1-6
Tolong bantu kerjakan nomor 1-6

2 Jawaban

  • Mapel : Matematika
    Kelas : X SMA
    Bab : Trigonometri

    Pembahasan :
    1||

    Cos A = -5/13
    Sin A = 12/13 (Sin + di Kuadran II)
    Sin B = 4/5
    Cos B = 3/5 (Cos + di Kuadran I)

    Maka...
    Sin A Cos B + Cos A Sin B
    = (12/13)(3/5) + (-5/13)(4/5)
    = 36/65 - 20/65
    = 16/65

    2||

    Ingat Rumus !
    Cos (A + B) = Cos A Cos B - Sin A Sin B

    Maka...
    Cos 50° Cos 10° - Sin 50° sin 10°
    = Cos (50 + 10)°
    = Cos 60°
    = 1/2

    3||

    (A - B) = 30°
    Sin(A - B) = Sin 30°
    Sin A . Cos B - Cos A Sin B = 1/2
    2/3 - Cos A Sin B = 1/2
    Cos A Sin B = 2/3 - 1/2
    Cos A Sin B = (4 - 3)/6
    Cos A Sin B = 1/6

    Maka...
    Sin (A + B)
    = Sin A . Cos B + Cos A Sin B
    = 2/3 + 1/6
    = (4 + 1)/6
    = 5/6

    4||

    a + β = 315°
    Tan (A + B) = Tan 315°
    (Tan A + Tan β)/(1 - Tan A . Tan β) = -1
    3/4 + Tan β = -1 + 3/4 Tan β
    3/4 Tan β - Tan β = 3/4 + 1
    Tan β (3/4 - 1) = 7/4
    Tan β (-1/4) = 7/4
    Tan β = (7/4)/(-1/4)
    Tan β = -7

    5||

    Cos A Cos B = Sin A Sin B
    Cos A Cos B - Sin A Sin B = 0
    Cos (A + B) = 0

    Sin A Cos B = Cos A Sin B
    Sin A Cos B - Cos A Sin B = 0
    Sin (A - B) = 0

    Karena nilai Sin dan Cos adalah 0, maka berada apda kuadran I.
    Jenis segitiga itu adalah segitiga Lancip.

    6||

    Tan 15° = p

    Maka...
    (Tan 165° - Tan 105°)/(1 + Tan 165° . Tan 105°)
    = Tan (165 - 105)°
    = Tan 60°
    = Tan (45 + 15)°
    = (Tan 45° + Tan 15°)/(1 - Tan 45° Tan 15°)
    = (1 + p)/(1 - p)
  • [tex]\displaystyle 1\\\sin a\cos b+\cos a\sin b=\frac{12}{13}\cdot\frac35-\frac5{13}\cdot\frac45\\\sin a\cos b+\cos a\sin b=\frac{36}{65}-\frac{20}{65}\\\boxed{\boxed{\sin a\cos b+\cos a\sin b=\frac{16}{65}}}[/tex]

    [tex]\displaystyle 2\\\cos50^\circ\cos10^\circ-\sin50^\circ\sin10^\circ=\cos(50+10)^\circ\\\cos50^\circ\cos10^\circ-\sin50^\circ\sin10^\circ=\cos60^\circ\\\boxed{\boxed{\cos50^\circ\cos10^\circ-\sin50^\circ\sin10^\circ=\frac12}}[/tex]

    [tex]\displaystyle 3\\\sin(a-b)=\sin a\cos b-\cos a\sin b\\\sin30^\circ=\sin a\cos b-\cos a\sin b\\\frac12=\frac23-\cos a\sin b\\\cos a\sin b=\frac16\\\\\sin(a+b)=\sin a\cos b+\cos a\sin b\\\sin(a+b)=\frac23+\frac16\\\boxed{\boxed{\sin(a+b)=\frac56}}[/tex]

    [tex]\displaystyle 4\\\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a\tan b}\\\tan 315^\circ=\frac{\frac34+\tan b}{1-\frac34\tan b}\\-1=\frac{\frac34+\tan b}{1-\frac34\tan b}\\\frac34\tan b-1=\frac34+\tan b\\-\frac74=\frac14\tan b\\\boxed{\boxed{-7=\tan b}}[/tex]

    [tex]\displaystyle 6\\\frac{\tan165^\circ-\tan105^\circ}{1+\tan165^\circ\tan105^\circ}=\tan(165^\circ-105^\circ)\\\frac{\tan165^\circ-\tan105^\circ}{1+\tan165^\circ\tan105^\circ}=\tan60^\circ\\\boxed{\boxed{\frac{\tan165^\circ-\tan105^\circ}{1+\tan165^\circ\tan105^\circ}=\sqrt3}}[/tex]