Matematika

Pertanyaan

Diketahui dua bilangan real positif x dan y. Jika x+2y = 20, maka nilai maksimum dari x^2y adalah
A. 16000/9
B. 16000/27
C. 4000/27
D. 1600/27
E. 400/9

2 Jawaban

  • x + 2y = 20 => x = 20 - 2y

    x^2.y = (20 - 2y)^2.y
    = (400 - 80y + 4y^2).y
    = 400y - 80y^2 + 4y^3
    Kita cari titik stasioner nya dengan cara diturunkan
    400 - 160y + 12y^2 = 0 ====> bagi 4
    3y^2 - 40y + 100 = 0
    (3y - 10)(y - 10) = 0
    y = 10/3 atau y = 10

    x = 20 - 2y
    y = 10 => x = 20 - 2(10) = 0
    Nilai x^2.y = (0)^2 . 10 = 0

    y = 10/3 => x = 20 - 2(10/3) = 60/3 - 20/3 = 40/3
    Nilai x^2.y = (40/3)^2 . 10/3 = 1600/9 . 10/3 = 16.000/27

    Jadi nilai maksimum nya 16.000/27
  • x + 2y = 20
    2y = 20 - x
    y = (20 - x )/2

    x^2 y
    = x^2 . (20- x)/2
    = (20x^2 - x^3) / 2

    f(x) = (20x^2 - x^3)/2

    u = 20x^2 - x^3
    u' = 40x - 3x^2
    v = 2
    v' = 0

    f'(x) = (u'v - uv') / (v^2)
    = (40x - 3x^2)2 - (20x^2 - x^3)0 / 2^2
    = (40x - 3x^2)2 / 4
    = (20x - (3/2)x^2)

    nilai maksimum dicapai saat f'(x) = 0
    (20x - (3/2)x^2) = 0
    Kali 2 kedua ruas
    40x -3x^2 = 0
    Kali - 1 kedua ruas
    3x^2 - 40x = 0
    x(3x - 40) = 0
    x = 0
    Atau x = 40/3
    Ambil 40/3 supaya menjadi maksimum.

    x = 40/3

    y = (20 - (40/3)) /2
    y = (20)/2 - (40/3)/2
    y = 10 - 40/6
    y = 20/6

    x^2 y
    = (40/3)^2 . 20/6
    =( 1600 / 9) . (20/6)
    = 32000 / 54
    = 16000/27

    B

Pertanyaan Lainnya