Matematika

Pertanyaan

jika alfa + beta = phi/ 3, alfa, beta sudut sudut lancip Dan tan alfa = 1/6 tan beta, maka sin alfa + sin beta =

2 Jawaban

  • Mapel : Matematika
    Kelas : X SMA
    Bab : Trigonometri

    Pembahasan :
    Terlampir...

    Sin A + Sin B
    = (√3)/(2√21) + (2√3)/(√21)
    = (√3 + 4√3)/(2√21)
    = (5√3)/(2√21)
    = (15√7)/(42)
    = 15/24 √7
    = 5/8 √7
    Gambar lampiran jawaban ErikCatosLawijaya
  • Bab Trigonometri
    Matematika SMA Kelas X

    alfa = a
    beta = b
    π/3 = 60°
    a + b = 60°
    b = 60° - a

    tan a = (1/6) tan b
    tan b = 6 . tan a

    tan (60° - a) = tan b
    (tan 60° - tan a) / (1 + tan 60° . tan a) = 6 . tan a
    √3 - tan a = 6 tan a (1 + √3 . tan a)
    6√3 tan² a + 6 tan a + tan a - √3 = 0
    6√3 tan² a + 7 tan a - √3 = 0
    6√3 p² + 7p - √3 = 0
    a = 6√3; b = 7; c = -√3

    p12 = (-7 +- √(7² - 4 . 6√3 . (-√3))/(2 . 6√3)
    p12 = (-7 +- √(49 + 72)) / (12 √3)
    p12 = (-7 +- √121) / (12√3)
    p12 = (-7 +- 11) / (12√3)

    p1 = (-7 + 11)/(12√3)
    p1 = 4/12√3
    p1 = 1/(3√3)
    p1 = (1/9) √3

    p2 = (-7 - 11)/12√3
    p2 = -18/12√3
    p2 = -3/2√3
    p2 = (-1/2) √3

    karena sudut lancip, maka yang memenuhi yang bernilai positif
    tan a = (1/9) √3
    tan a = (√3)/9 → y/x

    r = √(x² + y²)
    r = √(9² + √3²)
    r = √84
    r = 2√21

    sin a = y/r
    sin a = (√3) / (2.√21)
    sin a = (√3) / (2 . √3 . √7)
    sin a = 1/(2√7)
    sin a = (1/14) √7

    tan b = 6 . tan a
    tan b = 6 . (1/9) √3
    tan b = (2√3)/3 → y/x

    r = √(x² + y²)
    r = √(3²  + (2√3)²)
    r = √21

    sin b = y/r
    sin b = 2√3/√21
    sin b = 2√3 / (√7 . √3)
    sin b = 2/√7
    sin b = (2 √7) / 7

    sin a + sin b = (1/14) √7 + (2/7) √7
    sin a + sin b = (1/14) √7 + (4/14) √7
    sin a + sin b = (5/14) √7


Pertanyaan Lainnya