Jika dua garis yang memenuhi persamaan matriks [tex]\left[\begin{array}{cc}a&2&1&b\end{array}\right] \left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{
Matematika
Sunanto
Pertanyaan
Jika dua garis yang memenuhi persamaan matriks [tex]\left[\begin{array}{cc}a&2&1&b\end{array}\right] \left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}16&-18\end{array}\right][/tex] sejajar, maka nilai dari ab adalah
1 Jawaban
-
1. Jawaban yoesamudra
[tex] \left[\begin{array}{c}ax+2y\\x +by\end{array}\right] [/tex] =[tex] \left[\begin{array}{c}16&-18\end{array}\right] [/tex]
terdapat persamaan:
2y = -ax + 16
by = -x - 18
sejajar, maka [tex]m_{1} = m_{2}[/tex]
[tex]- \frac{a}{2} = - \frac{1}{b} [/tex]
[tex] \frac{a}{2} = \frac{1}{b} [/tex]
jadi , ab = 2 (perkalian silang)
moga membantu ...